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Intrusion into a stratified fluid 
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Preliminary measurements have been made of the debouching of homogeneous 
fluid from a broad source at its equilibrium depth into a linearly stratified tank 
of salt water. With c the velocity of the nose of the intrusion, h its half-thickness 
near the source, N the environmental buoyancy frequency and v the kinematic 
viscosity of the fluid, it  is shown for 100 5 Re = 2ch/u 5 500 that the intrusion 
becomes practically steady under an inertia-buoyancy balance. The internal 
Froude number Fr = c/Nh is shown to be of order unity. Forward-propagating 
disturbances and the ends of the tank are inferred to play an important part in 
the flow. 

1. Introduction 
Having risen as high as its momentum and buoyancy will carry it, a buoyant 

plume in a stably stratified environment settles at its equilibrium (or neutral 
buoyancy) level and spreads horizontally. It is the behaviour of an idealized 
spreading front, or ‘intrusion ’, which is studied in the laboratory experiments 
reported here. 

Such intrusions are characterized by the following salient features. 
(i) A stratified environment which may or may not be bounded in vertical or 

horizontal extent. 
(ii) The intruding fluid is practically homogeneous, discharging at its equili- 

brium level under gravity. 
(iii) The thickness and velocity of the intrusion are not primarily controlled 

by imposed boundary conditions except in so far as the volume flux of fluid is 
specified. Rather, the flow is dynamically self-determined. 

(iv) The Reynolds number based on intrusion volume flux is generally much 
greater than unity. Thus a t  least in the initial stages of horizontal spreading 
V~SCOUS stresses ought to be relatively unimportant. 

The emphasis of the preliminary laboratory experiments presented was on an 
approximately two-dimensional realization of the intrusion itself: the concomi- 
tant response of the stratified environment was not studied in detail. Further, 
the geometry of the source of the intruding fluid was carefully chosen so as to 
obviate entrainment of ambient fluid and permit study of the dynamics of the 
intrusion. The Reynolds number of the intrusions was made as large as was 
practical (up to 540 based on total volume flux per unit breadth from the source) 
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so that viscous effects were minimized, but not so large that the flow resulted in 
turbulent entrainment. It follows that the range of conditions was quite limited. 
Solutions of salt in water were used so the Prandtl number (T = u/Ec was large 
(about 300). Here Y and K are the kinematic viscosity and diffusivity of salt 
respectively for water. 

Since the problem of a rapid intrusion into a stably stratified fluid is the 
analogue of a gravity current in homogeneous fluid, it  may be anticipated that 
the internal Froude number Pr = c/Nh is of order unity, expressing a balance 
between inertia and buoyancy forces. Here c and h are a characteristic velocity 
and thickness of the intrusion, and N is the environmental buoyancy frequency. 

Thus, in summary, the parameter regime for the experiments described here is 

Be& 1, P r -  1, r $ l .  

2. Experiment arrangement 
The experiments were conducted in a tank (183 cm long x 10-3 cm broad x 

20 cm deep) filled with linearly stratified salt water to a depth of 13-16 cm. 
This was prepared by a variant of the ‘pile-on’ two-tank method due to Fortuin 
(1960). Installed vertically at one end of the tank was a rectangular tube 24 cm 
high, of the same breadth as the tank, and blocked off at the lower end only. 
A strip 3 cm deep on one face adjacent to this end was cut away over the full 
breadth and covered in steel gauze and expanded PVC so as to act as a deep- 
mouthed two-dimensional source of homogeneous intrusion fluid. The source 
supply was via a constant-head tank and flowmeter. These arrangements en- 
sured that the volume flux through the source was constant: the fluid depth in 
the source tube adjusted itself rapidly to supply the necessary total head at  any 
instant. Just before a run was begun 1 ml samples of the stratified fluid were 
withdrawn at 2 cm vertical intervals, sampling simultaneously. The samples’ 
refractive indices were determined to  check the linearity of the stratification 
and to set the density of the source fluid so as it had an equilibrium depth of 
half the working depth in the tank. 

Data were obtained from a sequence of photographs of a simple shadowgraph. 
This was formed by illuminating a sheet of tracing paper on the front of the tank 
through the working fluid by a QI light source situated 4 m behind the tank. 
In  some experiments vertical density profiles were obtained before and during 
the run by traversing a point conductivity probe of design similar to that de- 
scribed by Mied 82; Merceret (1968). In  yet fewer experiments velocity profiles 
were measured by observing the time-distortion of traces left by dropping 
potassium permanganate crystals into the tank. 

3. Background 
The problem of the establishment of a discharge into a stratified fluid has 

received little attention so far. Indeed, almost all theoretical understanding is 
by implication from studies of obstacles moving transversely in stratified fluid 
of infinite lateral extent a t  low Reynolds number and low internal Froude number. 
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Browand & Winant (1972) extended Graebel’s (1969) theoretical treatment of 
obstacles valid for non-diffusive fluids such that 

Fr2 g 1, RelFr2 1, (Re Fr2)* < 1. 

Here Re = chfv, Ii”/ = c/Nh and h is the half-thickness of an obstacle moving 
with transverse velocity c in a fluid of molecular viscosity v and buoyancy fre- 
quency N (  = [ -gp;’dp/dz]*). The dynamics of this flow are a balance between 
viscous and buoyancy forces. Browand & Winant also confirmed by experiment 
several aspects of the theory. A feature of the theory and experiments was 
the observation of an almost stagnant slug of fluid being pushed ahead of the 
obstacle with alternating jets above and below this slug in the environment. 
Janowitz (1974) has resolved the differences between his (1968, 1971) and 
Graebel’s downstream predictions (non-diffusive fluid, shear layers) and those of 
Freund & Meyer (1972) (diffusive fluid, stagnant slug). 

Maxworthy (1972) has invoked the low Reynolds number theory of Browand 
& Winant (1972) to interpret his experiments on the establishment of intrusions. 
He identified the slug of fluid observed to move with the obstacle in Browand & 
Winant’s work with the intrusion from his source into a stratified tank. Using 
conservation of volume he predicted that the length of the intrusion would in- 
crease as t% and the thickness near the source-as t B .  He confirmed the former 
prediction by laboratory experiment for low source flow rates but at  higher rates 
the small source used caused so much mixing that the interpretation of results 
was ambiguous. 

Only Foster & Saffman (1970) have considered in detail the effect that finite 
lateral extent has on the motions when an obstacle moves slowly and trans- 
versely in a stratified fluid. If a characteristic depth of the stratified region is 
H ,  it may be shown that the maximum velocity of disturbances which move 
upstream of the obstacle is cQ = N H / n  (see appendix). Since cg > c, even for the 
high Reynolds number intrusions of prime interest here, it  follows that almost 
from the start the obstacle is moving into fluid modified by prior disturbances. 
While this is only of conceptual interest to the formulations involving a viscous- 
dominated infinite stratified environment with steady flow fields about an 
obstacle, it is essential to an understanding of a Foster & Saffman result: that 
the upstream disturbances from the obstacle interact with each other and the 
end wall to establish shear layers which transfer fluid from in front of to behind 
the obstacle, thereby modifying the upstream stratification. They in effect 
showed that the stratification of the fluid in front of, and bounded vertically by, 
the obstacle decreases with increasing lateral displacement of the body until the 
body reaches the end wall, whereupon the fluid ‘in front of’ the obstacle has 
become homogeneous. 

At high Reynolds numbers the viscosity-buoyancy dynamic balance may be 
expected to give way to an inertia-buoyancy balance for obstacle and intrusion 
behaviour in a stratified fluid. No such theoretical treatment has yet emerged 
however. 

The complementary problem of the establishment of selective withdrawal 



550 P. C. Manins 

from a stratified reservoir has been the subject of an extensive study by Pao 
& Kao (1974). While the present problem is distinctly different, it does exhibit 
the same far-field, large time behaviour as the withdrawal problem: a series of 
forward-propagating disturbances centred about the level of the source or sink. 
The appendix derives this result for a source in a horizontal channel. 

Zuluaga-Angel, Darden & Fischer (1972) have reported laboratory experi- 
ments on the present problem at Reynolds numbers almost as large as those 
achieved here. They, like Maxworthy (1972), used an approximation to a line 
source so the source fluid underwent an internal hydraulic jump on entering the 
tank. This caused considerable mixing - an object of their study - and resulted 
in secondary layers and much forward disturbance. They observed the length 
of intrusion to increase a.s t%. 

4. Experimental results and observations 
The photographs in figure 1 (plate 1) show that intrusions into a continuously 

stratified fluid have a smooth pointed nose with no noticeable waviness: this 
confirms a speculation by Wilkinson & Wood (1972). The displacement of the 
environmental isopycnals results in an increase in the potential energy of the 
flow. This serves the same purpose as the breaking head wave of homogeneous 
gravity currents in balancing the driving pressure force. 

If for the present the experimental tank, of depth 2H, may be regarded as 
semi-infinite in length, dimensional analysis gives for the velocity of the nose 
of the rapid intrusion 

c = @Ngfn (Re, r ,  q5) ( 4 . 1 ~ )  

and for the half-thickness measured in the vicinity of the source 

h = q4N-4 gn (Re, r ,  4). (4.1b) 

Here Re = q/v is the characteristic intrusion Reynolds number based on the 
source volume flux Q per unit breadth, 7 = Nt is the buoyancy time variable, 
and $J E h/H is the depth ratio, defined in terms of h for convenience. Figure 2 
defines the intrusion geometry. 

The range of variation of the groups in relations (4.1) that could be covered 
in the laboratory experiments was limited by technical constraints. In  particular 
the depth ratio 4 varied little from a value of 0.15 and the maximum Re achiev- 
able without significant entrainment was about 500. The following definable 
stages in intrusion behaviour were noted by monitoring the intrusion thickness 
near the source for sufficiently high Reynolds numbers (viz. 2 100). 

(i) An adjustment stage in which the intrusion flow was established. The time 
required to complete this stage was of order r = 30. It was often characterized 
by a slight transient temporal increase in thickness at  higher Reynolds numbers, 
presumably because convective accelerations were more important then. 

(ii) A quasi-steady stage in which h changed imperceptibly with time and the 
bulk of the flow moved as a slug without changes in nose form. This implies 
constant nose velocity, and is confirmed in figure 3. 
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FIGURE 2. Sketch of the idealized intrusion based on figure 1. 

FIQURE 3. Intrusion slug length m. elapsed time around stage (ii). The data, symbols relate 
to different experiments. 

A B C D E F G H I  
Re 72 110 142 180 183 225 101 116 148 
N a  14.3 12.3 14.5 11.5 15.5 12.9 6.65 6.65 7.0 

J K L M N O P  
181 224 255 86 159 208 257 
6.61 6.52 ‘7.29 3.81 3.09 3.51 3.75 

(iii) A final stage where viscous stresses, or the end of the tank or both, 
noticeably slowed down the intrusion, causing its thickness to increase. 

If the flow Reynolds number was too low then no definable stage (ii) was ob- 
served; the flow increased in thickness at all times, possibly tending to the par- 
ticular time-dependent behaviour studied by Maxworthy (1972). It is stage (ii), 
where quasi-steady flow existed, which is of most dynamical interest here. 
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FIGWE 4. (a) Intrusion nose velocity, and (6) layer half-thickness as functions of source 
volume flux and environmental stratification. The flux q used in the figures is the observed 
flux computed from velocity and thickness readings. It differed from the input flux by 
about 5 %, mainly because of uncertainties in reading, three-dimensional effects and a 
little entrainment near the source. The theoretical lines come from the hydraulic 
model of 85. Typical error bars for the data are indicated. 0,  N 2  = 3.5; 0 ,  N a  = '7.0; 
0,  N2 = 14. 

From figure 3, the intrusion length is proportional to time for practically all of 
the runs reported. There is no evidence of a t8 dependence as found by Maxworthy 
(1972) a t  lower Reynolds numbers. For stage (ii), then, since q5 changed but little 
between experiments and the Reynolds numbers were large, relations (4.1) 
should reduce to 

c cc $liV*, h cc qiN-4. (4.2a, b)  

The results for all experiments which had a well-defined second stage are 
presented in figure 4 as a test of relations (4.2). The data correlate well but there 
is systematic departure from universal relations when the data are ordered 
with respect to N2. Very little dependence on Reynolds number is discernible in 
the data when correlated by (4.2). These correlations will be considered further 
after other results have been mentioned. 

Figure 5 (plate 1) shows strong influence ahead of the nose, centred about the 
level of the intrusion. A velocity plot, figure 6 ,  at a vertical section through the 
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FIUURE 6. Normalized horizontal velocity a t  x / L  = 0.44 (L is the length of the tank) 
through the intrusion at a later time during the run in figure 5. The alternating jetting 
is characteristic of similar stratified flows. q = 3.0 cm2/s, N 2  = 6.5 sTa. 
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intrusion shows more clearly the alternating jets above and below it which are 
also visible in figure 5.  

Vertical conductivity traverses through the intrusion resulted in the (slightly 
smoothed) examples in figure 7. It can be seen particularly in figure 7(a)  that 
the straining of the isopycnal field due to the intrusion occurs primarily imme- 
diately above and below the intrusion. The straining is achieved by the jetting 
in the environment and is visible in the right-hand dye streaks in figure 5. The 
asymmetry about the intrusion level in figure 7 is probably due to the difference 
in tank top and bottom boundary conditions. Fluid below the intrusion is rela- 
tively quiescent but that above is all rising to increase the free-surface elevation 
as source fluid is added. 

The systematic departures from universal curves of the correlations in figure 
4 and the strong forward-propagating effects observable in figure 5 suggest that 
the latter may be interacting with the far end wall of the tank in a manner like 
that found by Foster & Saffman (1970): in particular to modify the initial 
stratification as mentioned above ($3).  A qualitative observation in the experi- 
ments supports this. After a certain time during an experiment the source would 
be shut off. The intrusion would continue to penetrate for several seconds 
and then halt. When observed some 12-15 h later, the intrusion would be in 
approximately the same position. This could only occur if the remaining 
ambient fluid in front of the intrusion and bounded by the intrushn thickness 
had become practically homogeneous during the penetration. 

5. A simplified hydraulic intrusion model 
It has been shown in $ 4 that a rapid intrusion at  constant volume flux into a 

stably stratified environment reaches a quasi-steady state in which inertia, 
forces and buoyancy forces balance. This suggests the following approximate 
hydraulic model of the intrusion, motivated by the similarity the flow has to 
conventional gravity currents. There are important over-simplifications re- 
quired of the approach. 

Axes are taken moving with the (supposed steady) nose velocity c of the in- 
trusion. Deviations from this velocity within the intrusion are ignored, and the 
flow is confined to a channel of depth 2H. The plane z = 0 is a plane of symmetry. 
Figure 8 is a sketch of conditions in the new co-ordinate system. 

The equation of motion on the plane x = 0 for inviscid Boussinesq fluid is 

Here u is the horizontal fluid velocity, p the pressure and po the density at z = 0. 
Equation (5.1) is to be integrated along x = 0 from x = c;I to x = E. Far enough 
upstream, a t  point E,  no propagating disturbances have yet arrived, so the 
initial hydrostatic conditions prevail and the relative flow velocity is steady, i.e. 

The downstream point G in figure 8 is positioned at x < 0, where the intrusion 
is of uniform thickness, so hydrostatic conditions are again approached. Above 

u =  - c .  
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C it is assumed that the straining of the environmental density stratification is 
concentrated into a region in the vicinity of the intruding fluid. The length 
scale of the disturbance is D (figure 8), and D < H .  The density traverses shown 
in figure 7 indicate that this is a reasonable assumption in the experiments.-f 
A fair approximation to the environmental density anomaly d(z) is 

4 Upstream-propagating 
p = p o ( l  -NL-) disturbances 

+ g 

__c 

exp [ - ( z  - h)/D] for z 2 h, 
for z < h, 

where W )  = PoNZh/g. (5.3) 
Integrating (5.1) along the x axis between G and E gives 

which, in view of the assumptions made about the sections x = C, E, gives 

Now the only unsteady regions in the model flow are in the vicinity of the 
fronts of the columnar wave disturbances (discussed in the appendix) which are 
abIe to propagate upstream faster than the relative flow velocity c. There are 2M 
such wave fronts, given by the condition that 

c-c,  < 0, 1 < m < M .  (6.5) 

M = integer part (NH/nc) .  (5.6) 

It follows from the discussion in the appendix of the properties of the columnar 
waves that the contribution to  the integral in (5.4) from the mth unsteady front 
for large times is 

c, is the group velocity of the mth mode [equation (A 5) ] ,  so 

- 
N H  

(5.7) 

t The velocity jetting and departure from undisturbed density stratification in the 
environment above and below the intrusion are important. They render an application of 
Bernoulli's equation along the intrusion surface invalid ; cf. the gravity current (Benjamin 
1968). 
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FIGURE 9. Internal Froude number c/Nh as a function of M ,  the number of forward- 
propagating columnar modes from (6.6).  The curves are upper and lower bounds from 
the simplified hydraulic model. Typical error bars on Fr are indicated for the data 
points. 

Here urn is the amplitude of the disturbance velocity far upstream due to the 
mth mode. 

The problem of obtaining the disturbance amplitudes is simplified in the 
model because the advective and inertial terms are small, although the hori- 
zontal velocities behind the fronts may be large. The linearized Oseen problem 
for the channel can be solved readily. If the obstacle in figure 8 is replaced by a 
source of strength q ( = ch) in an initially uniform stream of velocity c, Wong & 
Kao (1970) have shown that for large times disturbances penetrate far upstream 
and contribute 

mnz ch COB (mnz/H) 
u,cos- = - l < m < M ,  H H (  1 - ~ T C / N H )  ’ 

to the velocity field there. The Mth mode has the largest amplitude but the lowest 
wave speed. 

Substitution of (5.7) and (5.8) into (5.4) gives 

2 0  2Fr 
h F r 2 =  1+-- 2 

rn-l mn( 1 - Fr4)’ (5.9) 

where Fr = c/Nh and # is the depth ratio hfH. 
Within the restrictions of the model, two limits on the predicted internal 

Froude number may be obtained from (5.9) and compared with the experiments. 
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A lower bound on Fr 

It is assumed that the disturbance to the environmental density gradient above 
and below the intrusion at x = G is negligible in so far as it contributes to the 
pressure there. That is D = 0. Further, the experimental tank is assumed to be 
infinitely long so that all M disturbance fronts are in the fluid at  large times. 
Then (lower bound) 

M 2Fr 
F r 2 = 1 -  

nz-lmm(l -mnB’r#)’ 
(5.10) 

If the flow were steady the predicted Fr would be unity, but as the permitted 
number of forward-propagating modes increases ( M  increases), Fr decreases 
from unity. Energy is propagated ahead of the intrusion to modify the environ- 
ment, so the intrusion travels relatively more slowly for increased M .  

Figure 9 compares Fr calculated from (5.10) using q5 = 0.15, the average value 
for the experiments reported in 5 4, with the internal Froude numbers obtained 
from the experiments. M is obtained from (5.6). Equation (5.10) is a good lower 
bound. 

An upper bound on Fr 

First consider the flow to be steady everywhere, so that (5.9) becomes 

Fr2 = 1 + 2D/h.- (5.11) 

Then the change in the kinetic energy of the steady horizontal flow between 
z = E and x = G in figure 8 must equal the increase in the potential energy of 
the flow resulting from the rising of the isopycnals to clear the obstacle. The 
resulting expression is 

&2/( 1 - q5) = gVh2 + N2h(D2 + Dh), 

or 

Solution of (5.11) and (5.12) for B’r and D/h with q5 = 0.15 gives 

1 - #) = 9 + (1 + D/H) D/h. (5.12) 

Fr  2: 1.48, D/h N 0.6. (5.13), (5.14) 

If q5 + 0, Fr2 - 1 + (#)I  and D/h N (+)*. 
The value (5.13) gives a crude upper bound on Fr. More realistic are the fol- 

lowing circumstances. Because the experimental tank is of finite length, the 
forward-propagating disturbances will reach the far end and be reflected. On 
reflexion the mth mode cancels itself out. Thus for sufficiently large times all 
contributions to (5.7) will be destroyed by reflexion except for the Mth mode, 
which is travelling only slightly faster than the intrusion velocity C. 

A n  upper bound on Fr is then obtained by permitting only the Mth front to 
be present in the flow. From (5.9), using D/h from (5.14) (upper bound), 

2Fr 
Mn( 1 - MnFr#)* 

Fr2 = 2.2- (5.15) 

Because in this limit the number of fronts upstream of the intrusion is not 
decreasing with time through reflexion at the end wall, the Froude number 
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observed in a finite tank would be time independent once the flow was established. 
This upper limit is therefore more likely to be that approached by an experi- 
mental intrusion than is the lower bound. 

Figure 9 illustrates (5.15) for q5 = 0.15. Considering the uncertainty in experi- 
mentally determining the internal Froude numbers the data and the upper 
bound (5.15) compare very favourably. 

The upper bound (5.13) expressed in terms of c and h is also plotted in figure 4. 
For the nose velocity of the intrusion it is an upper bound and for the intrusion 
half-thickness it is a lower bound. It can be seen that the intrusion thickness is 
more strongly affected by the columnar waves than the velocity of intrusion. 
The additional systematic dependences of N2 found in figure 4 are also explicable 
in terms of the presence of columnar waves. The larger N is, the larger is 2M 
from (5.6) and so the smaller is Fr from (5.15). Then, for a given @N&, c decreases 
as N increases, and for fixed q*N-), h increases as N increases. 

6. Conclusion 
At sufficiently high Reynolds numbers the intrusion of a homogeneous fluid 

into a stably stratified environment at  its equilibrium level is, from the pre- 
liminary experiments reported, dynamically self-determined after an initial 
transient period. An inertia-buoyancy balance is observed in which the internal 
Froude number based on the intrusion is of order unity. The internal Froude 
number decreases with an increase in the number of permissible forward- 
propagating columnar waves. 

A hydraulic model of the experimental arrangement is able to predict upper 
and lower bounds on the internal Froude numbers observed. Even though the 
model assumes vertical symmetry about the centre-line of the intrusion, the 
predicted bounds compare very well with the results of the experiments. It is 
inferred that the end walls of the tank and the columnar waves present play a 
crucial role in the experiments. 

The basis of this paper is part of the writer’s Ph.D. dissertation (Manins 1973). 
A debt of sincere gratitude for inspiration and example is owed Dr J. Stewart 
Turner. The receipt of a Commonwealth Scholarship is also gratefully acknow- 
ledged. 

Appendix. The propagation of disturbances 
The nature of the propagation of disturbances ahead of a rapid intrusion may 

be examined by considering a simplified linear problem. 
A line source 2c j8 (~ )8 ( z )  is turned on at  time t = 0 in an infinite channel of 

depth 2H.  6(z) is Dirac’s delta function. The inviscid, non-diffusive, linearly 
stratified fluid which fills the channel is initially at rest; inertia effects are 
ignored; only the region x > 0 is considered. Figure 2 defines the co-ordinate 
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system used. The equations of motion in the Boussinesq approximation are 

Here H(t )  = 1,O for t < 0; p' and p' are departures in density and pressure from 
the initial hydrostatic state. Then, with au/az = 0 on z = f H ,  the solution for 
the horizontal velocity field for x > 0 is 

with 8 > 0 and a2 = 1 + N2/p2. 
The integral in (A 2) 

I (mx, t )  = - - exp (pt - mn-x/aH) dp 

has been studied in a similar context by McEwan & Baines (1974) in the large 
time limit. As a f i s t  approximation it reduces for large x to 

I (mx ,  t )  - exp ( - mrx/NHt).  (A 4) 

The result (A 4) shows that the various modes of disturbance are columnar 
waves of zero frequency: they propagate away from the source in the form of 
horizontal jet-like columns with velocities 

cnl = NH/mrr (m = 1,2 ,  ...). (A 5) 

x = HNt/mn + 33BH(Nt))/2mn-, (A 6) 

The position of the front of the disturbance for mode m is given by 

where B = O( 1). The integral I grows practically linearly from very near zero 
to very near unity within the range - 1.2 < B < 1.0. 

Thus the nature of the disturbances which propagate forwards from a source- 
like disturbance in a stratified fluid is approximately as follows. At large times 
a set of columnar waves of zero frequency is to be found far ahead of the source. 
The waves travel at the group velocities given by (A 5) behind a front of width 
given by the second term of (A 6), i.e. O(H(Nt)f/m).  The fluid velocity for the 
mth mode grows practically linearly from very near zero to very near its maximum 
value within the frontal region. The flow is steady back to the front of the (m - 1)th 
mode, where there is another unsteady region. 
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( h )  
FIGURE 1.  Photographs of shatlowgraplis from two iritrasioii experiments. ‘l’tie clock 
indicates elapsed time from 00-00 11. The intrusion sourcc is at ttie extreme right of tho 
tank of stratified salt water, a t  approximately tlie mid-depth. (a) A small amount of dye 
has been added to the needle-like intrusion quid. Note t,ho smooth outline of the intrusion, 
the thickness of which nea.r tlie source is not elated t’o t’he vertical position and size of t,he 
source. ( b )  Similar to (a )  but no dye is pregent. A difforent behnviour near tho source is 
exhibited, again illlistrating source-geornetrf indt~ppritlerice. 

T 

FIGURE 5.  Dye-streak distortion from t l w  vertical in the apparatus due to the 
intrusion, shortly after tho start of a run. 

W I N S  (Facing p .  560) 


